Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Genet Eng Biotechnol ; 20(1): 98, 2022 Jul 06.
Article in English | MEDLINE | ID: covidwho-1923613

ABSTRACT

BACKGROUND: The baculovirus expression vector system has been developed for expressing a wide range of proteins, including enzymes, glycoproteins, recombinant viruses, and vaccines. The availability of the SARS-CoV-2 genome sequence has enabled the synthesis of SARS-CoV2 proteins in a baculovirus-insect cell platform for various applications. The most cloned SARS-CoV-2 protein is the spike protein, which plays a critical role in SARS-CoV-2 infection. It is available in its whole length or as subunits like S1 or the receptor-binding domain (RBD). Non-structural proteins (Nsps), another recombinant SARS-CoV-2 protein generated by the baculovirus expression vector system (BEV), are used in the identification of new medications or the repurposing of existing therapies for the treatment of COVID-19. Non-SARS-CoV-2 proteins generated by BEV for SARS-CoV-2 diagnosis or treatment include moloney murine leukemia virus reverse transcriptase (MMLVRT), angiotensin converting enzyme 2 (ACE2), therapeutic proteins, and recombinant antibodies. The recombinant proteins were modified to boost the yield or to stabilize the protein. CONCLUSION: This review covers the wide application of the recombinant protein produced using the baculovirus expression technology for COVID-19 research. A lot of improvements have been made to produce functional proteins with high yields. However, there is still room for improvement and there are parts of this field of research that have not been investigated yet.

2.
Viruses ; 13(11)2021 11 02.
Article in English | MEDLINE | ID: covidwho-1502526

ABSTRACT

ORF3a has been identified as a viroporin of SARS-CoV-2 and is known to be involved in various pathophysiological activities including disturbance of cellular calcium homeostasis, inflammasome activation, apoptosis induction and disruption of autophagy. ORF3a-targeting antibodies may specifically and favorably modulate these viroporin-dependent pathological activities. However, suitable viroporin-targeting antibodies are difficult to generate because of the well-recognized technical challenge associated with isolating antibodies to complex transmembrane proteins. Here we exploited a naïve human single chain antibody phage display library, to isolate binders against carefully chosen ORF3a recombinant epitopes located towards the extracellular N terminal and cytosolic C terminal domains of the protein using peptide antigens. These binders were subjected to further characterization using enzyme-linked immunosorbent assays and surface plasmon resonance analysis to assess their binding affinities to the target epitopes. Binding to full-length ORF3a protein was evaluated by western blot and fluorescent microscopy using ORF3a transfected cells and SARS-CoV-2 infected cells. Co-localization analysis was also performed to evaluate the "pairing potential" of the selected binders as possible alternative diagnostic or prognostic biomarkers for COVID-19 infections. Both ORF3a N and C termini, epitope-specific monoclonal antibodies were identified in our study. Whilst the linear nature of peptides might not always represent their native conformations in the context of full protein, with carefully designed selection protocols, we have been successful in isolating anti-ORF3a binders capable of recognising regions of the transmembrane protein that are exposed either on the "inside" or "outside" of the infected cell. Their therapeutic potential will be discussed.


Subject(s)
Antibodies, Monoclonal/immunology , COVID-19/immunology , COVID-19/virology , SARS-CoV-2/immunology , Viroporin Proteins/immunology , Animals , Biomarkers , COS Cells , Cell Surface Display Techniques/methods , Chlorocebus aethiops , Epitopes/immunology , HEK293 Cells , Humans , Membrane Proteins/immunology , Protein Domains , Vero Cells
3.
Front Cell Infect Microbiol ; 11: 697876, 2021.
Article in English | MEDLINE | ID: covidwho-1325516

ABSTRACT

Antibodies are essential molecules for diagnosis and treatment of diseases caused by pathogens and their toxins. Antibodies were integrated in our medical repertoire against infectious diseases more than hundred years ago by using animal sera to treat tetanus and diphtheria. In these days, most developed therapeutic antibodies target cancer or autoimmune diseases. The COVID-19 pandemic was a reminder about the importance of antibodies for therapy against infectious diseases. While monoclonal antibodies could be generated by hybridoma technology since the 70ies of the former century, nowadays antibody phage display, among other display technologies, is robustly established to discover new human monoclonal antibodies. Phage display is an in vitro technology which confers the potential for generating antibodies from universal libraries against any conceivable molecule of sufficient size and omits the limitations of the immune systems. If convalescent patients or immunized/infected animals are available, it is possible to construct immune phage display libraries to select in vivo affinity-matured antibodies. A further advantage is the availability of the DNA sequence encoding the phage displayed antibody fragment, which is packaged in the phage particles. Therefore, the selected antibody fragments can be rapidly further engineered in any needed antibody format according to the requirements of the final application. In this review, we present an overview of phage display derived recombinant antibodies against bacterial, viral and eukaryotic pathogens, as well as microbial toxins, intended for diagnostic and therapeutic applications.


Subject(s)
Bacteriophages , COVID-19 , Communicable Diseases , Animals , Antibodies, Monoclonal , Communicable Diseases/diagnosis , Communicable Diseases/therapy , Humans , Pandemics , SARS-CoV-2
4.
J Mol Biol ; 433(13): 166983, 2021 06 25.
Article in English | MEDLINE | ID: covidwho-1174385

ABSTRACT

Recombinant antibodies (Abs) against the SARS-CoV-2 virus hold promise for treatment of COVID-19 and high sensitivity and specific diagnostic assays. Here, we report engineering principles and realization of a Protein-fragment Complementation Assay (PCA) detector of SARS-CoV-2 antigen by coupling two Abs to complementary N- and C-terminal fragments of the reporter enzyme Gaussia luciferase (Gluc). Both Abs display comparably high affinities for distinct epitopes of viral Spike (S)-protein trimers. Gluc activity is reconstituted when the Abs are simultaneously bound to S-protein bringing the Ab-fused N- and C-terminal fragments close enough together (8 nm) to fold. We thus achieve high specificity both by requirement of simultaneous binding of the two Abs to the S-protein and also, in a steric configuration in which the two Gluc complementary fragments can fold and thus reconstitute catalytic activity. Gluc activity can also be reconstituted with virus-like particles that express surface S-protein with detectable signal over background within 5 min of incubation. Design principles presented here can be readily applied to develop reporters to virtually any protein with sufficient available structural details. Thus, our results present a general framework to develop reporter assays for COVID-19, and the strategy can be readily deployed in response to existing and future pathogenic threats and other diseases.


Subject(s)
Antibodies, Viral/chemistry , Antigens, Viral/immunology , COVID-19/diagnosis , COVID-19/virology , SARS-CoV-2/isolation & purification , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/genetics , Antibodies, Viral/immunology , Antigens, Viral/chemistry , Antigens, Viral/isolation & purification , Epitopes/immunology , Humans , Immunoglobulin G/chemistry , Immunoglobulin G/immunology , Luciferases , Luminescent Measurements/methods , Protein Engineering , SARS-CoV-2/chemistry , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL